Multi-Objective Optimization of Distribution Networks via Daily Reconfiguration

Seyed-Mohammad Razavi, Student Member, IEEE, Hamid-Reza Momeni, Senior Member, IEEE, Mahmoud-Reza Haghifam, Senior Member, IEEE, and Sadegh Bolouki, Member, IEEE

Abstract—This paper presents a comprehensive approach to improve the daily performance of an active distribution network (ADN), which includes renewable resources and responsive loads (RLs), using distribution network reconfiguration (DNR). The optimization objectives considered in this work can be described as (i) reducing active losses, (ii) improving the voltage profile, (iii) improving the network reliability, and (iv) minimizing the operation costs. The proposed approach also accounts for the probability of renewable resource failure given the information collected from their initial state at the beginning of each day. Furthermore, solar radiation variations are estimated based on past historical data, and the impact of the performance of renewable resources such as photovoltaics (PVs) is determined hourly based on a Markov model. Since the number of reconfiguration scenarios is very large, stochastic DNR (SDNR) based on the probability distance method is employed to shrink the scenarios set, before a self-adaptive modified crow search algorithm (SAMCSA) is introduced to find an optimal scenario. Finally, the IEEE 33-bus radial distribution system and the 86-bus Taiwan Power Company (TPC) system are investigated as two case studies to verify the effectiveness of the proposed method.

Index Terms—Distribution network reconfiguration, probability distance, dynamics reconfiguration, crow search algorithm.

OMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω, Ω</td>
<td>Index and set of scenarios.</td>
</tr>
<tr>
<td>t, T</td>
<td>Index and set of time intervals.</td>
</tr>
<tr>
<td>g, G</td>
<td>Index and set of DGs.</td>
</tr>
<tr>
<td>l, L</td>
<td>Index and set of RLs.</td>
</tr>
<tr>
<td>e, ESS</td>
<td>Index and set of ESS.</td>
</tr>
<tr>
<td>i, j, N_{bus}</td>
<td>Indices and total number of buses.</td>
</tr>
<tr>
<td>br, N_{br}</td>
<td>Index and total number of branches.</td>
</tr>
<tr>
<td>re</td>
<td>Index of renewable resources.</td>
</tr>
<tr>
<td>N_s</td>
<td>Total number of MCS.</td>
</tr>
<tr>
<td>ρ^grid</td>
<td>Wholesale electricity price.</td>
</tr>
<tr>
<td>SU, SD</td>
<td>Start-up and shut-down costs of DGs.</td>
</tr>
<tr>
<td>ρ^RL</td>
<td>Contract price of RLs.</td>
</tr>
<tr>
<td>$L_{i,t}$</td>
<td>Active power of load i at time t.</td>
</tr>
<tr>
<td>R_{br}</td>
<td>Resistance of branch br.</td>
</tr>
<tr>
<td>$P_{g,max}$</td>
<td>Maximum active power of DG g.</td>
</tr>
<tr>
<td>$P_{g,min}$</td>
<td>Minimum active power of DG g.</td>
</tr>
<tr>
<td>$Q_{g,max}$</td>
<td>Maximum reactive power of DG g.</td>
</tr>
<tr>
<td>Z, F</td>
<td>Binary variables for DGs’ status.</td>
</tr>
<tr>
<td>$I_{br,max}$</td>
<td>Maximum apparent capacity of branch br.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ, μ</td>
<td>Failure and repair rates of each renewable resource.</td>
</tr>
<tr>
<td>$P_{l,max}$</td>
<td>Maximum active power contributed to RL l.</td>
</tr>
<tr>
<td>ρ^SW</td>
<td>Price of switching.</td>
</tr>
<tr>
<td>P_{D}</td>
<td>Probability for unavailability of re.</td>
</tr>
<tr>
<td>P_{re}</td>
<td>Probability for availability of re.</td>
</tr>
<tr>
<td>$f(X)$</td>
<td>Objective function.</td>
</tr>
<tr>
<td>X</td>
<td>Control vector.</td>
</tr>
<tr>
<td>$B_{p,i}$</td>
<td>Best position of crow i.</td>
</tr>
<tr>
<td>f_l</td>
<td>Flight length of crow i.</td>
</tr>
<tr>
<td>A_{P_l}</td>
<td>Awareness probability of crow i.</td>
</tr>
<tr>
<td>IAP_{l}</td>
<td>Improved awareness probability of crow i.</td>
</tr>
<tr>
<td>$C_{op,es}$</td>
<td>ESS operation cost.</td>
</tr>
<tr>
<td>$C_{M,es}$</td>
<td>ESS maintenance cost.</td>
</tr>
<tr>
<td>P_{es}</td>
<td>Electrical storage power in unit time.</td>
</tr>
<tr>
<td>P_{grid}, Q_{grid}</td>
<td>Active and reactive power received from the grid.</td>
</tr>
<tr>
<td>P_g, Q_g</td>
<td>Active and reactive power received from DG g.</td>
</tr>
<tr>
<td>P_{re}</td>
<td>Active power received from re.</td>
</tr>
<tr>
<td>η_l</td>
<td>Maximum demand control coefficient of RL l.</td>
</tr>
<tr>
<td>P_l, Q_l</td>
<td>Active and reactive power controlled from RL l.</td>
</tr>
<tr>
<td>$V_{i,max}$, $V_{i,min}$</td>
<td>Maximum and minimum voltage of node i.</td>
</tr>
<tr>
<td>$P_{i,v}$, $Q_{i,v}$</td>
<td>Active and reactive power loads of node i.</td>
</tr>
<tr>
<td>η_{es}</td>
<td>Charging and discharging system efficiency.</td>
</tr>
<tr>
<td>P_{es}^+, P_{es}^+</td>
<td>Charging and discharging ESS in unit time.</td>
</tr>
<tr>
<td>SOC_{es}</td>
<td>State of charging in ESS.</td>
</tr>
<tr>
<td>$C_{es,max}$</td>
<td>Maximum capacity of the ESS.</td>
</tr>
<tr>
<td>$SOC_{es,min}$</td>
<td>Minimum state of charging in ESS.</td>
</tr>
<tr>
<td>L_i</td>
<td>Load connected to the node i.</td>
</tr>
</tbody>
</table>

I. INTRODUCTION

TODAY conventional energy sources such as oil, gas, and coal together supply over 80% of the world’s primary energy. These fossil fuels contain a large amount of carbon, which is the leading cause of climate change and global warming [1]. Climate change, persistent environmental pollution, and energy crises have led many countries to use renewable energy instead of fossil fuels [2]. Challenges of managing traditional distribution systems have become more complex with the inclusion of distributed generations (DGs) such as PVs, since distribution system management (DSM) should now also account for the uncertain energy production of these resources [3].
A remarkable DSM approach to address these novel challenges is to reconfigure the distribution network. Distribution network reconfiguration (DNR) is carried out by changing the cosmetic structure of a distribution network by the status of tie and sectionalizing switches. DNR methods are divided into static and dynamic categories [4]. Static reconfiguration methods are those that are often performed on annual, seasonal, or monthly bases, while dynamic reconfiguration involves short periods of time, such as daily or hourly periods [4]. Renewable resources may experience failure in different parts of their components [5]. Such failures are of great importance since renewable resources are responsible for a significant portion of the generated energy in the network. In this work, we propose an efficient dynamic reconfiguration scheme, that is free of remotely controlled switches and takes into account the possibility of failure of the renewable farms.

A. Literature Review

The primary purpose of reconfiguration in the literature has been minimizing network losses [6], [7]. However, other objectives such as balancing load demand and improving reliability indicators have also been addressed [8], [9]. Over the past two decades, numerous methods have been proposed to address the DNR problem, a survey of which can be found in [10]. The uncertainty of generation and load demand is one of the critical factors that must be taken into consideration for DNR [11]. In [12], the uncertainty involved in renewable sources is modeled by 24-hour scenarios and, for each hour, an optimal configuration with respect to the balance between generation and demand is presented. In [13], accounting for the uncertainty of renewable generation, the DNR problem is examined in three stages, the evaluation stage, the time division stage, and the optimization stage. Taking the consumers’ daily load curves into account, [14] conducts DNR aiming to reduce active losses. In [15], the daily load demand is factored in DNR to improve reliability indices. DNR is carried out in [16] considering the spatial and temporal capabilities of autonomous electric vehicles, and their demand for charging. There, a mixed-numeric programming model is proposed to make DNR compatible with charging and discharging of electric vehicles. Authors in [17] investigate the DNR problem with the aim of increasing DG penetration capacity given thermal and voltage constraints and direct values of consumer demand at different times. Risk-based reconfiguration is suggested in [18], which considers load and generation uncertainty and employs reward/penalty schemes. In [19], the two-point estimation method is used to incorporate uncertainty into the analysis. Authors in [20] propose a multi-period DNR model to take the dynamic load demand into account. The daily DNR problem is then solved using the genetic algorithm (GA) method to minimize the total network losses by considering the optimal DG output over the next 24 hours. In [21], a method for determining the minimum network losses with uncertain load and renewable generation is presented. In particular, a mixed-integer two-stage robust optimization formulation and a decomposition algorithm are proposed to address the problem.

B. Contributions

Current solutions to the DNR problem generally have high computational complexities, which highlights the need for new, more efficient methods. In distribution networks with consistent changes in generation and demand and the possibility of failure of various equipment types, it is imperative to find quick solutions to achieve satisfactory results. Equipment failure negatively impacts DSM, which aims to improve the welfare of consumers and increase the profits of the distribution companies. Table I compares the existing reconfiguration methods with the one proposed in this work. Major contributions of the paper are described below.

1. Our DNR method takes equipment failure into consideration, which is one of the most important issues in DSM as it can greatly impact the network’s performance. Our focus is on the failure of part of the PV farm that reduces its penetration in the network during the repair period. An optimal reconfiguration sequence is introduced according to the operating horizon (e.g., 24 hours). As a result, if the PV penetration increases along the planning horizon (repairing a failure part), the objective functions such as active losses, voltage deviations, and operating costs will deviate from their desirable values. DSM then tries to change the network configuration in such a way that the objective functions continue to be optimized by increasing the PV farm penetration. As demonstrated in Figure 1, the effects of the possibility of failure of renewable farms such as PV with uncertainty in solar radiation and the impact of DGs, responsive loads (RLs), and energy storage systems (ESSs) on the result of DNR are explicitly investigated.

2. Dynamic reconfiguration often requires high computational speed and the personnel’s fast performance. Moreover, most of the existing literature on dynamic reconfiguration assumes that switches can be controlled remotely, which is not always practical since these switches are costly to install and control [4], [22]. In this work, hourly optimal configurations for the next 24 hours is selected at the beginning of each day, which provides the personnel ample time to change the status of the switches and eliminates the need for remotely controlled switches. Furthermore, to reduce the computational complexity, an efficient stochastic DNR method is proposed.

Figure 1: Block diagram of the proposed work.
3) In deriving static or dynamic reconfiguration, a variety of methods have been employed, including mathematical programming, such as mixed-integer linear programming [23], mixed-integer conic programming [24], and mixed-integer quadratically constrained programming [25], and metaheuristic techniques, such as GA [20], harmony search algorithm (HSA) [26], and adaptive particle swarm optimization (APSO) [27]. In this work, the so-called self-adaptive modified crow search algorithm (SAMCSA) is introduced as part of the solution to the reconfiguration problem.

C. Paper Organization

The remainder of the paper is organized as follows. In Section II, the optimization objective function is formulated. Section III explores uncertainty of renewable resources by introducing a decision tree derived from resource failure and random behavior of solar radiation. The multi-objective optimization and the SAMCSA method are presented in Sections IV and V, respectively. Section VI presents two case studies and the results obtained with the proposed analytical reconfiguration algorithm. Finally, Section VII concludes the paper with a summary and future directions of this research.

II. FORMULATION OF MULTI-OBJECTIVE DNR

The decision variable X for the DNR problem is a vector consisting of the tie and sectionalizing switches, the DGs, the RLs contract, and the ESSs, i.e.,

$$X = [Tei, SW, DG, RL, ESS] ,$$

$$Tei = (Tei_1, Tei_2, ..., Tei_n) ,$$

$$SW = (SW_1, SW_2, ..., SW_n) ,$$

$$DG = (DG_1, DG_2, ..., DG_n) ,$$

$$RL = (RL_1, RL_2, ..., RL_n) ,$$

$$ESS = (ESS_1, ESS_2, ..., ESS_n) .$$

A. Multi-objective Function

Based on the information received from the initial state of renewables at the time of optimization, the four-dimensional objective function $OF(X)$ is described as

$$OF(X) = [OF_1(X), OF_2(X), OF_3(X), OF_4(X)] .$$

where reliability, active losses, voltage deviation, and operating costs are the first to fourth parts of the objective function, respectively. These functions are briefly described below in that order.

$$OF_1(X)$$ represents the probability of hourly failure of the branches, which is an indicator for determining the reliability of the load point. Using the Monte Carlo simulation method, the probability of failure at distribution branches for hourly timing is modeled. The availability of branches per hour is determined by failure time T_F and repair time T_R calculated as [28]

$$T_F = -MTTF \cdot \ln(u_1), \quad T_R = -MTTR \cdot \ln(u_2),$$

where $MTTF$ and $MTTR$ are the mean failure time and the mean repair time, respectively, and u_1 and u_2 are random variables that are uniformly distributed between 0 and 1. Values T_F and T_R are rounded to the nearest integer. The procedure continues by generating new values for u_1 and u_2 until the entire time period $(N_t = 8760$ hours) is covered, which is introduced as one of the Monte Carlo simulation scenarios (N_s) [28]. For the branch br with scenario s, we define the variable $a_{br,s}$ to be equal to 1 at range T_F and 0 at range T_R. The probability of hourly failure of each branch is then defined by the matrix Re_{br} as

$$Re_{br} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,N_s} \\ \vdots & \ddots & \vdots \\ a_{N_s,1} & \cdots & a_{N_s,N_s} \end{bmatrix} .$$

A time instant t is calculated by generating a random number between 0 and 1 multiplied by N_t. The probability of failure of the branch br is equal to the ratio of sum $a_{br,s}$ to the number of scenarios N_s. The failure probability of any configuration is as follows:

$$OF_1(X) = \sum_{i=1}^{N_s} L_i \left(\sum_{s \in S} a_{br,s} x_{br} \right) / N_s ,$$

where x_{br} is a binary variable representing the active and inactive branch and N_s is the number of scenarios implemented in the Monte Carlo simulation. One notices that the Monte Carlo simulation is performed for all the branches before the optimization process begins and only the matrix Re_{br} is used in the optimization. This means that the computation time of the Monte Carlo simulation does not affect optimization.

$$OF_2(X)$$ represents active losses in the network and is expressed as

$$OF_2(X) = \sum_{br \in N_{br}} R_{br} |I_{br}|^2 .$$

$$OF_3(X)$$ represents of voltage deviation in each node, i.e.,

$$OF_3(X) = \max (|v_{ref} - \min v_i| , |v_{ref} - \max v_i|) .$$

Finally, $OF_4(X)$ represents the distribution network operation costs, including the cost of electricity purchased from the grid, the cost of energy generated by DGs, the cost of switching,
the cost of using RLs, and the cost of using ESSs, i.e.,

\[OF_1(X) = C_{Grid} + C_{DG} + C_{RL} + C_{SW} + C_{ESS}, \]

(8)

where

\[C_{Grid} = \rho_{Grid} P_{Grid}, \]

(9)

\[C_{DG} = \sum_{g \in G} C_g + \sum_{g \in G} Z_g S_{Ug} + \sum_{g \in G} F_g S_{Dg}, \]

(10)

\[C_{SW} = \rho_{SW} \sum_{br \in N_v} |X_{br,t} - X_{br,t-1}|, \]

(11)

\[C_{RL} = \sum_{l \in L} \rho_{RL} P_{lRL}, \]

(12)

\[C_{ESS} = \sum_{es \in ESS} C_{op,es} P_{es} + C_{M,es}. \]

(13)

Equations (9)-(10) represent energy purchased from the grid and the cost of using DGs, respectively [29], [30]. Here, \(C_g \) is calculated as \(a_g U_g + b_g P_g + c_g P_g^2 \), where \(a, b, \) and \(c \) are cost function coefficients, \(S_{Ug} \) and \(S_{Dg} \) are the start-up and shut-down costs of DG \(g \), respectively. Equation (11) is the cost of switching [31], (12) is the cost of power outages for consumers in RLs [30], and (13) represents the cost of using ESSs [32].

B. Electrical Constraints and Limits

The constraints used in the DNR problem are as follows:

\[P_{grid} + \sum_{g \in G} P_g + \sum_{re \in RE} P_{re} + \sum_{l \in L} P_l + \sum_{es \in ESS} \eta_{es} (P_{es}^- - P_{es}^+) = \sum_{i \in N_{bus}} P_l + \sum_{i \in N_{bus}} V_i V_j Y_{ij} \cos(\theta_{ij} - \delta_i + \delta_j), \]

(14)

\[Q_{grid} + \sum_{g \in G} Q_g + \sum_{l \in L} Q_{l} = \sum_{i \in N_{bus}} Q_l + \sum_{i \in N_{bus}} V_i V_j Y_{ij} \sin(\theta_{ij} - \delta_i + \delta_j), \]

(15)

\[V_{i,\text{min}} \leq V_i \leq V_{i,\text{max}}, \quad V_{\text{slack}} = 1, \]

(16)

\[P_{g,\text{min}} \leq P_g \leq P_{g,\text{max}}, \]

(17)

\[Q_{g,\text{min}} \leq Q_g \leq Q_{g,\text{max}}, \]

\[SOC_{es} = SOC_{es,t-1} + \eta_{es} (P_{es}^- - P_{es}^+), \]

\[SOC_{es,\text{min}} \leq SOC_{es} \leq SOC_{es,\text{max}}, \]

(18)

\[N_{br} = N_{bus} - 1, \quad (I + M_G)^{N_{bus} - 1} > 0, \]

(19)

\[0 \leq P_l \leq P_{l,\text{max}} \cdot (\eta_{l,t}/100), \]

\[0 \leq \eta_{l,t} \leq \eta_l - \sum_{t'=1}^{t-1} \eta_{l,t'}, \]

(20)

Equations (14) and (15) represent the active and reactive power load flow; (16) represents the voltage constraints; (17) represents the active and reactive power limits of DGs; and (18) shows the charging and discharging limits of storages. Equation (19) represents the topology constraints, where \(M_G \) is the adjacency matrix of the selected configuration \((G) \) and the inequality is to be understood element-wise. This constraint guarantees that in the selected configuration all points are connected to the slack node. The major limitation in switching is that the structure of each configuration must remain radial. Equation (20) represents the RLs’ constraints. According to the agreement between some consumers and DSM, energy consumption can be reduced to a limited extent. Equation (21) represents the flow capacity of the branches, and finally, (22) represents the maximum number of switching allowed for a switch.

III. Scenario Generation and Reduction

Since DNR algorithms often involve a high computational complexity, other concurrent issues such as equipment failure tend to be overlooked. In this paper, we discuss possibility of failure of renewable resources and uncertainty in solar radiation simultaneously. Due the very large number of scenarios, we should also carefully reduce the set of scenarios, leading us to the so-called SDNR problem.

A. Scenario Generation for Initial PV Status

In this work, it is assumed that each PV farm consists of \(T \) equipment items. The power output of a PV farm is equal to the sum of the power outputs of all the items. If repairs and failures of an equipment item are exponentially distributed, according to the Markov chain model, its unavailability probability \((P_{re}^D) \) and availability probability \((P_{re}^U) \) at time \(t \) are defined as [33]

\[P_{re}^D(t) = \frac{\lambda_{re}}{\mu_{re} + \lambda_{re}} + \left(P_{re}^D(0) - \frac{\lambda_{re}}{\mu_{re} + \lambda_{re}} \right) e^{-(\mu_{re} + \lambda_{re})t}, \]

(23)

\[P_{re}^U(t) = \frac{\mu_{re}}{\mu_{re} + \lambda_{re}} + \left(P_{re}^U(0) - \frac{\mu_{re}}{\mu_{re} + \lambda_{re}} \right) e^{-(\mu_{re} + \lambda_{re})t}, \]

(24)

where \(\lambda_{re} \) and \(\mu_{re} \) are the failure rate and repair rate of each equipment item, respectively. In dynamic reconfiguration, the value \(t \) is very small, meaning that the second term in the right hand expressions of (23) and (24) cannot be omitted. Figure 2 shows an overview of the proposed method. If part of the equipment is unavailable at time
\[t = 0 \], the probability equation of the number of equipment available at the time \(\Delta t \) is as [33]

\[
\pi_{av} = \sum_{i=0}^{av} \left(T - A \right)_{A} \left(A - i \right)_{\pi_{av-i}} P_{U0}^{i} \times P_{D0}^{\pi_{av-i}} \times P_{U0}^{T-A-i} \times P_{D0}^{A-av+i}, av = 0, \ldots, T,
\] (25)

where \(av \) is the number of available items at time \(t = \Delta t \), and \(A \) is the number of unavailable items at \(t = 0 \). The probability matrix for 24 hours can now be defined as

\[
\begin{pmatrix}
\pi_{1,0} & \cdots & \pi_{1,T} \\
\vdots & \ddots & \vdots \\
\pi_{24,0} & \cdots & \pi_{24,T}
\end{pmatrix}.
\] (26)

B. Scenario Generation for Solar Irradiance

In the literature, by collecting past historical data, solar radiation is modeled using the Beta distribution for each hour of the day [34]–[36], which is as

\[
f_{S}^{\alpha,\beta}(S) = \begin{cases}
\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} S^{\alpha-1} (1-S)^{\beta-1} & 0 \leq S \leq 1, \alpha, \beta \geq 0 \\
0 & \text{otherwise},
\end{cases}
\] (27)

where \(\alpha \) and \(\beta \) are positive constants calculated as [36]

\[
\beta = (1-\mu) \left(\frac{\mu(1+\mu)}{\sigma^2} - 1 \right), \quad \alpha = \frac{\mu \times \beta}{1-\mu},
\] (28)

where \(\mu \) and \(\sigma \) are the mean and standard deviation from historical data, respectively. In the past, only one random variable was considered and, by comparing it to the cumulative distribution function (CDF), solar radiation would be estimated. However, here we produce a larger set of random variables to increase the computational accuracy. The probability of each sample is \(\pi_{i} = n_{i}/N, \ i = 1, \ldots, R \), where \(N \) and \(n_{i} \) are the total number of samples and the number of repetitions of sample \(i \), respectively. Hence, the probability of solar radiation operational horizon (e.g., 24 hours) is expressed as

\[
\begin{pmatrix}
\pi_{1,0} & \cdots & \pi_{1,R} \\
\vdots & \ddots & \vdots \\
\pi_{24,0} & \cdots & \pi_{24,R}
\end{pmatrix}.
\] (29)

C. Scenario Reduction

According to the scenarios related to the initial state and solar radiation using stochastic programming, a decision tree, similar to that of Fig. 3, can be formed with three layers and \(N_{\Omega} = TR \) scenarios. One notices that it could be difficult to use this method to solve a daily optimization problem since it is not scalable, meaning that increasing the number of scenarios will significantly increase the computation time. Therefore, we employ a probabilistic distance method to reduce the number of scenarios. The most common probability distance utilized in stochastic programming is the Kantorovich distance [28]. First, function \(\nu \) is defined as the norm of the difference between pairs of scenarios [28], that is

\[
\nu(\omega,\omega') = ||r(\omega) - r(\omega')||, \quad \forall \omega \in \Omega,
\] (30)

where \(r(.) \) is the outcome of each scenario at each step of the decision tree. The values of function \(\nu \) can be conveniently arranged into a symmetric matrix with zeros as the diagonal elements, where each row (and column) represents a scenario. We now perform an iterative algorithm starting with the set of all possible scenarios \(\Omega_{j} = \{1, 2, \ldots, N_{\Omega}\} \). We find the scenario \((\omega_{s}) \) within \(\Omega_{j} \), which has the minimum aggregated distance to other scenarios in \(\Omega_{j} \) [28], that is

\[
d_{\omega} = \sum_{\omega' = 1, \omega' \neq \omega}^{N_{\Omega}} \pi_{\omega',\omega} \nu(\omega,\omega'), \quad \forall \omega \in \Omega_{j},
\] (31)

\[
\omega_{s} \in \arg \min_{\omega \in \Omega_{j}} d_{\omega}.
\] (32)

We then update values of the matrix and remove \(\omega_{s} \) from the set \(\Omega_{j} \) of scenarios, i.e.,

\[
\nu(\omega,\omega') = \min \{ \nu(\omega,\omega'), \nu(\omega,\omega_{s}) \}, \quad \forall \omega, \omega' \in \Omega_{j},
\] (33)

After a number of iterations, the set \(\Omega_{s}^{*} = \Omega_{s} \setminus \Omega_{j}^{*} \) is selected as the set of preferred scenarios. Redistribution of probabilities can be accomplished as follows. The probabilities of selected scenarios \(\omega \in \Omega_{s}^{*} \) are computed as

\[
\pi_{\omega} \leftarrow \pi_{\omega} + \sum_{\omega' \in J(\omega)} \pi_{\omega'},
\] (34)

where

\[
J(\omega) = \left\{ \omega' \in \Omega_{j}^{*} | \omega = \arg \min_{\omega' \in \Omega_{j}^{*}} \nu(\omega',\omega') \right\}.
\] (35)
The method of reducing the scenario described above is known as the fast forward selection algorithm [28]. The pseudo-code for the fast forward selection algorithm is given in Algorithm 1.

Algorithm 1 Fast forward selection

Compute function \(\nu^[(0)](\omega, \omega') \) for each pair of scenarios \(\omega \) and \(\omega' \) in \(\Omega \).
Set \(\Omega_j^{[0]} = \{1, 2, \ldots, N_\Omega\} \)
for \(i = 1 \) to \(i_{\text{Max}} \) do
Compute \(d_{\omega, \omega'}^{[i]} \)
Select \(\omega_i \in \arg \min_{\omega \in \Omega} d_{\omega, \omega'}^{[i]} \)
Set \(\Omega_j^{[i]} = \Omega_j^{[i-1]} \setminus \omega_i \)
Update \(\nu^{[i]}(\omega_i, \omega') \)
end for
Compute \(\pi_{\omega_i} \)

Since we have considered both equipment failure and solar radiation, a scenario is represented by a pair \((a^{vch}, i^{ch}) \), where \(a^{vch} \) indicates the failure scenario and \(i^{ch} \) indicates the solar radiation scenario. The selection probabilities of scenario \((a^{vch}, i^{ch}) \) in the operational horizon (e.g., 24 hours) can be represented by the following matrix:

\[
\begin{bmatrix}
\pi_{a^{vch}, i^{ch}}^{1, 1} & \cdots & \pi_{a^{vch}, i^{ch}}^{1, F} \\
\vdots & \ddots & \vdots \\
\pi_{a^{vch}, i^{ch}}^{24, 1} & \cdots & \pi_{a^{vch}, i^{ch}}^{24, F}
\end{bmatrix}
\]

(35)

D. Solar Generation

The output power of the solar generator depends on the temperature and the radiation of the sun which are, according to [36], calculated as

\[
P_{pv} = \gamma \times FF \times V_{ij} \times I_{ij},
\]

\[
T_{ct} = T_{at} + S \times \left\{ NOCT - 20 \right\} / 0.8,
\]

\[
V_{ij} = V_{oc} - K_{ct} \times T_{ct},
\]

\[
I_{ij} = S \times \left\{ I_{sc} + K_{ct} \times (T_{ct} - 25) \right\},
\]

\[
FF = \frac{V_{mp} \times I_{mp}}{V_{oc} \times I_{oc}},
\]

(36)

where \(P_{pv} \) is the output power at solar irradiance \(S \), \(\gamma \) is the number of solar modules, \(V_{ij} \) and \(I_{ij} \) are the output voltage and current, \(T_{ct} \) and \(T_{at} \) are the module temperature and the ambient temperature at which the module is located (\(^\circ\)C), \(NOCT \) is the cell temperature in nominal operation, \(s \) is the solar radiation rate, \(K_{ct} \) and \(K_{ct} \) are the voltage (\(V/\circ\)C) and current (\(A/\circ\)C) temperature coefficients, \(V_{mp} \) and \(I_{mp} \) are the maximum voltage and current power point, and finally \(V_{oc} \) and \(I_{oc} \) are the open-circuit voltage and the short-circuit current, respectively.

IV. MULTI-OBJECTIVE OPTIMIZATION

In general, a multi-objective optimization problem with different constraints can be expressed as

\[
\begin{align*}
\min & \quad \text{OF}(X) = [F_1(X), F_2(X), \ldots, F_n(X)]' \\
\text{subject to} & \quad h_i(X) = 0, \quad i = 1, 2, \ldots, N_e \quad \text{for equality constraints} \\
& \quad g_i(X) \leq 0, \quad i = 1, 2, \ldots, N_{ueq}, \quad \text{for inequality constraints}.
\end{align*}
\]

(37)

where \(h_i \) and \(g_i \) are the equality and inequality constraints, respectively. In multi-objective optimization, the objective functions may conflict, leading to inevitable tradeoffs. A solution is said to dominate another solution if it is not worse with respect to any of the objective functions and is better with respect to at least one of the objective functions. Given a multi-objective optimization problem, one often seeks to find a Pareto optimal solution, which is a solution that is not dominated by any other solution. More precisely, solution \(X \) dominates solution \(Y \), if

\[
\forall j \in 1, 2, \ldots, N_f, F_j(X) \leq F_j(Y),
\]

\[
\exists k \in 1, 2, \ldots, N_f, F_k(X) < F_k(Y).
\]

(38)

Since the DNR problem is a nonlinear optimization problem with equality and inequality constraints, it needs to be converted into an unconstrained one by constructing an augmented objective function incorporating penalty factors for any value violating the constraints, i.e.,

\[
F_i(X) = f_i(X) + p \sum_{j=1}^{N_{eq}} (h_j(X))^2
+ p \sum_{j=1}^{N_{ueq}} (\max \{0, g_j(X)\})^2.
\]

(39)

Given that the aforementioned functions have different properties, we use fuzzy membership to formulate them on an equal footing, that is

\[
\mu_{f_i} = \begin{cases}
1 & f_i(X) \leq f_{i_{\text{min}}} \\
0 & f_i(X) \geq f_{i_{\text{max}}} \\
\frac{f_{i_{\text{max}} - f_i(X)}}{f_{i_{\text{max}} - f_{i_{\text{min}}}}} & f_{i_{\text{min}}} \leq f_i(X) \leq f_{i_{\text{max}}},
\end{cases}
\]

(40)

where \(f_{i_{\text{max}}} \) and \(f_{i_{\text{min}}} \) are the upper and lower limits of each of the objective functions, respectively, calculated according to the system constraints.

V. SOLUTION PROCEDURE

In this section, the proposed Self-Adaptive Modified Crow Search Algorithm (SAMCSA) is described in detail.

A. Original Crow Search Algorithm (CSA)

The CSA is one of the modern optimization methods introduced by Askarzadeh [37]. This method is inspired by the crows’ intelligent behavior in hiding their food to solve an optimization problem. This algorithm provides a simple concept and an effective technique that can be implemented quickly. In this algorithm, the crow \(i \) flight length in each iteration is denoted by \(f_l \), while the degree of awareness of
the crow j pursuit is denoted by the awareness probability AP_j. The pseudo-code for the CSA is given in Algorithm 2.

Algorithm 2 The original CSA

```
Randomly create the initial position of all the crows (nPop) at random
Evaluate the objective function and determine best position ($B_p$) for each crow

while $t = t_{max}$ do
  for $i = 1$ to $nPop$
    The crow $i$ randomly selects crow $j$ from the population.
    if $rand_i \geq AP_j$ then
      $X_i^{it} = X_i^{it-1} + rand_i \times fl_i \times (B_{p,j}^{it-1} - X_i^{it-1})$
    else
      $X_i^{it} =$ a random position in the search space
    end if
  end for
  Check the feasibility of new positions
  Evaluate the objective function
  Update the best position of each crow
end while
```

B. Self-Adaptive Modified Crow Search Algorithm (SAMCSA)

1) **Improved Awareness Probability:** In the standard CSA, by reducing the AP value, the algorithm performs a search in a local area, which leads to finding an optimal solution in that area. On the other hand, if the AP value increases, the algorithm performs a global, exhaustive search. The awareness probability parameter in the standard CSA is a fixed number. However, if the AP value remains constant in the optimization process, it may not produce the desired results. In fact, by changing the AP value to the improved awareness probability, denoted by IAP, the ratio between diversification and intensification can be controlled. In this paper, crow j and crown i use external memory and the IAP parameter is set according to this memory. In this setting, if crow j has a better response to the objective function (better memory), crown i should have a better chance of chasing it. As a result, the IAP can be formulated as

$$IAP_{j,it} = \frac{\sum_{k=1}^{4} \mu_{j,k}^{it} \cdot r_{av}}{\sum_{k=1}^{4} \mu_{j,k}^{it}} + \left(1 - \frac{it}{t_{max}}\right),$$

(41)

where r_{av} is a random number between 0 and 1, t_{max} is the maximum number of iterations in the algorithm, and $\mu_{j,k}^{it}$ is the best position of the crow i. Since $rand_i$ is a random number between 0 and 1, when the average of crow j’s objective functions is higher than that of crow i, crow i is more likely to follow crow j.

2) **Levy Distribution:** Levy distribution is used in this work for the random search of each crow. Levy Flight is a powerful mathematical tool introduced by Paul Levy. In the search space, Levy’s distribution is usually more efficient than a uniform random distribution [38]. First, a step size Z_i is computed using the Mantegna method [39], that is

$$Z_i = \frac{r_a}{|r_b|^{1/\tau}}, \quad r_a \sim N(0, \sigma_a^2), \quad r_b \sim N(0, \sigma_b^2),$$

$$\sigma_a = \left(\frac{\Gamma(1 + \tau) \times \sin(\pi\tau/2)}{\Gamma(1 + \tau/2) \times \tau \times 2^{(\tau-1)/2}}\right)^{1/\tau}, \quad \sigma_b = 1.$$

(42)

Z_i is essentially a step in the random walk. Random walk is a Markov chain as the next position depends only on the current position and the transition probabilities, and the Levy flight has a long stride in iteration [40]. We can calculate the new position of crow i as

$$X_i^{it} = X_i^{it-1} + fl_i \times (B_{p,i}^{it-1} - X_i^{it-1}) + Z_i (X_i^{it} - X_i^{it-1}),$$

(43)

where X_i^{it} is a Pareto optimal solution calculated using the Roulette Wheel. The number of Pareto points is stored in an external memory called repository. Due to the limited capacity of the repository, some Pareto points are controlled by the Roulette Wheel so that the speed of the optimization algorithm is not reduced.

VI. Numerical Simulations

In this section, the performance of the proposed method is examined for two test networks. The first case is the IEEE 33-bus test system with one substation and 37 switches, with an operating voltage of 0.95 to 1.05 p.u. branch and load information, as given in [41]. The second case is the 86-bus Taiwan Power Company (TPC) with two substations, 11 feeders, and the historical data of solar radiation. In this section, the performance of the proposed method is examined for two test networks. The first case is the IEEE 33-bus test system with one substation and 37 switches, with an operating voltage of 0.95 to 1.05 p.u. branch and load information, as given in [41]. The second case is the 86-bus Taiwan Power Company (TPC) with two substations, 11 feeders, and the historical data of solar radiation. In [41], the second case is the 86-bus Taiwan Power Company (TPC) with two substations, 11 feeders, and 96 switches [42]. Here, according to [14], we consider different types of consumers, i.e., industrial, commercial and residential consumers, with different demand time. In [36], their classification for the first case is given, and Table II shows the types of consumers in the second case. Moreover, in [30], the energy price is given in 24 hours. The RLs are at nodes 8, 21, 24, 29, 30, and 32 in the first case and at nodes 14, 21, 30, 33, 73, and 81 in the second case. Under the agreement, the DSM can control up to $\eta = 50$ of consumption during hours 9 to 24. Also, the DSM must pay $\$115$ per MWh under the contract.

In the first case, we assume that there are three renewable farms (solar generators) at nodes 9, 16, and 31, and in the second case, there are five renewable farms at nodes 15, 20, 62, 71, and 85. Historical data (mean and standard deviation) of solar radiation for 1MW PVs are given in [34]. Their features are listed in Table III [43]. Two DGs with capacities of 1MW and 0.8MW are located at nodes 15 and 25 of the first case and 8 and 55 of the second case. Also, two ESSs are located at nodes 9 and 16 in the first case and 15 and 85 in the second case. Their features are listed in Table IV [30] and Table V [32].

Each switch can participate in up to 4 switching operations a day for the purpose of reconfiguration, and none of them can be remotely controlled. The cost of each switching is estimated at $\$1$ [30]. In the proposed method, the distribution system operator calculates the configuration of each hour for the next 24 hours according to the announced information of the status of the renewable farm (available or not available) and the historical data of solar radiation.
A. Investigating the Effect of Renewable Farm Failure

As explained previously, one of the most important parameters in DNR is equipment availability. In other words, failure of any equipment item must be taken into consideration when choosing the hourly configuration. Table VI shows the probability of the number of equipment items for a renewable source at $T = 5$ and $\Delta t = 15$. We select π_{ax}^{15} with the highest probability as the number of available PV farms' equipment items. In the simulations, three scenarios are defined to investigate the effect of considering solar farm failure:

- Scenario 1: All PV farms’ equipment items are available.
- Scenario 2: The failure of PV farms’ equipment is considered. However, it is assumed that equipment items will never be repaired or become available again.
- Scenario 3: The possibility of failure and the possibility of repairing PV farms are explicitly considered.

For Scenarios 2 and 3, in the first case, $A_1 = A_2 = 0$ and $A_3 = 3$, and in the second case, $A_1 = A_2 = A_3 = 0$, $A_4 = 2$, and $A_5 = 3$. Figure 4 shows the sum of five renewable farms' output power in the second case for the three scenarios with a constant amount of solar radiation. As shown in Figure 4, the power output of the renewables in Scenario 1 in the early hours of the day is much higher than in the other scenarios. Table VII provides the optimal configuration for the second case at $\Delta t = 10$ for Scenarios 1 and 3. Voltage profile for the configuration selected in Scenario 1 and 3 are demonstrated in Figure 5. It can be seen that the configuration chosen in Scenario 3 is much more appropriate.

Figure 6 shows the changes in OF_2 given Scenarios 2 and 3 in the first case. Since in Scenario 2, the possibility of repairing the damaged components is not considered, the active power loss in this scenario has increased compared to Scenario 3.

Table III: The PV characteristics

<table>
<thead>
<tr>
<th>T_{at}</th>
<th>V_{mp}</th>
<th>I_{mp}</th>
<th>V_{oc}</th>
<th>I_{sc}</th>
<th>K_{et}</th>
<th>K_{st}</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 (°C)</td>
<td>18 (V)</td>
<td>11.12 (A)</td>
<td>22.30 (V)</td>
<td>11.89 (A)</td>
<td>0.38 (%A)</td>
<td>0.1 (%A)</td>
</tr>
</tbody>
</table>

Table IV: Cost coefficients and technical data for DG units

<table>
<thead>
<tr>
<th>a_g</th>
<th>b_g</th>
<th>c_g</th>
<th>S_{u_g}</th>
<th>S_{d_g}</th>
<th>$P_{g,\text{max}}$ (KW)</th>
<th>$P_{g,\text{min}}$ (KW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>79</td>
<td>0.0035</td>
<td>15</td>
<td>10</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>87</td>
<td>0.0045</td>
<td>15</td>
<td>10</td>
<td>800</td>
<td>80</td>
</tr>
</tbody>
</table>

Table V: The ESS unit characteristics [32]

<table>
<thead>
<tr>
<th>ESS</th>
<th>C_{max} (KW/h)</th>
<th>C_{rep} ($)</th>
<th>S_{oc}</th>
<th>N_{es}</th>
<th>P_{es} (KW/h)</th>
<th>Q_{life} (KW/h)</th>
<th>η_{es}</th>
<th>$%$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300</td>
<td>900</td>
<td></td>
<td>40</td>
<td>40</td>
<td>10.569</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

Table VI: Probability of the number of equipment items available for a PV farm

<table>
<thead>
<tr>
<th>A</th>
<th>π_{ax}^{15}</th>
<th>A</th>
<th>π_{ax}^{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\pi_1 = 0.9555$</td>
<td>3</td>
<td>$\pi_3 = 0.7328$</td>
</tr>
<tr>
<td>1</td>
<td>$\pi_4 = 0.6385$</td>
<td>4</td>
<td>$\pi_5 = 0.6663$</td>
</tr>
<tr>
<td>2</td>
<td>$\pi_1 = 0.5417$</td>
<td>5</td>
<td>$\pi_1 = 0.7253$</td>
</tr>
</tbody>
</table>

Figure 4: The sum of the power output of five PVs for the three scenarios in the second case.

- Scenario 1: All PV farms’ equipment items are available.
- Scenario 2: The failure of PV farms’ equipment is considered. However, it is assumed that equipment items will never be repaired or become available again.
- Scenario 3: The possibility of failure and the possibility of repairing PV farms are explicitly considered.

Table VII: Open switches in the second case for Scenario 1 and 3 at $\Delta t = 10$

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Open switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>s18 s35 s46 s60 s62 s70 s76</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>s81 s84 s86 s90 s92 s95</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>s88 s89 s86 s90 s92 s95</td>
</tr>
</tbody>
</table>
B. Comparison of SAMCSA with Other Methods

To evaluate the SAMCSA, we perform optimization with GA, PSO, and CSA algorithms at $\Delta t = 10$ for the second case given Scenario 3. The experiments are repeated 10 times and the results are presented in Table IX. The proposed SAMCSA returns superior results for the mean values of the optimal solutions, the standard deviation of optimal solutions, and the computation time compared to other methods. Also, Table VIII shows the values of the three objective functions (OF_1, OF_2, and OF_3) before reconfiguration and after reconfiguration without considering PVs, DGs, ESSs, RLs. These results show that this DNR method can be adopted as an effective strategy to improve the performance.

For ease of reviewing the values of the objective functions, the 3-D diagrams are depicted in Figure 8. Each circle in the figure is a Pareto solution and in each diagram one of the objective functions is ignored. The optimal values of the objective functions are marked in cyan (reliability), red (active losses), blue (voltage deviation), and green (operation costs).

As mentioned in Section IV, the values obtained from the Pareto set are generated in the random space, all of which are Pareto non-dominated responses. Also, Figure 9 shows the number of iterations required to reach convergence for OF_4 by comparing different methods in the second case.

To demonstrate the performance of the proposed method, we examine the first case without considering PVs, DGs, ESSs, RLs, and with a definite amount in the active and reactive power consumption. Table X shows the reconfiguration results with the proposed method and other methods regarding OF_2.

It can be seen that the SAMCSA results are similar to those of other known methods.

VII. CONCLUSION

Given the high computational complexity of distribution network reconfiguration (DNR), it is difficult to take into consideration many issues such as equipment failure when performing DNR. In this paper, the possibility of failure of renewable resources is considered, leading to the so-called SDNR method. In this method, the number of scenarios is reduced using the probability distance method, then the
(a) Objective functions except OF_1.

(b) Objective functions except OF_2.

(c) Objective functions except OF_3.

(d) Objective functions except OF_4.

Figure 8: 3-D plot of the non-dominated solutions investigating objective functions in the second case at $\Delta t = 10$.

Figure 9: Single line comparing the convergence speed of the SAMCSA with those of other methods of operation costs in the second case.

Table X: Comparison with respect to OF_2 of the proposed method with other methods in the first case

<table>
<thead>
<tr>
<th>Method</th>
<th>Power loss (KW)</th>
<th>Open switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanderson Gomes [3]</td>
<td>139.53</td>
<td>s7,s9,s14,s32,s37</td>
</tr>
<tr>
<td>MBA [19]</td>
<td>139.53</td>
<td>s7,s9,s14,s32,s37</td>
</tr>
<tr>
<td>MHBMO , DPSO [45]</td>
<td>139.53</td>
<td>s7,s9,s14,s32,s37</td>
</tr>
<tr>
<td>Goswami [46]</td>
<td>143.69</td>
<td>s7,s9,s14,s32,s37</td>
</tr>
<tr>
<td>PSO-ACO [47]</td>
<td>139.53</td>
<td>s7,s9,s14,s32,s37</td>
</tr>
<tr>
<td>SAMCSA</td>
<td>139.53</td>
<td>s7,s9,s14,s32,s37</td>
</tr>
</tbody>
</table>

best scenario is selected. The SAMCSA algorithm has also been proposed to solve the DNR problem efficiently. The performance of this algorithm has been compared with the GA and PSO algorithms in terms of computation time. Given the promising reduction in computation time, this algorithm should be suitable for implementation in large-scale networks. A short list of future directions for this research includes considering dispatch DG (at the same time as DNR), optimizing critical switches, and improving search methods to find optimal solution.

REFERENCES

